GLF73910

Ultra-Efficient, I_QSmart[™] Battery Protection Switch

Product Specification

DESCRIPTION

The GLF73910 is an I_QSmart^{TM} ultra-efficient, full battery protection switch with an accurate over charge voltage, over discharge voltage, and short circuit protection for lithium-lon/Polymer battery safety.

The over charge and discharge voltage protections keep a rechargeable battery working within the desired safe operating condition. When the battery is charged past the over voltage detection level, the GLF73910 switch opens in a preset delay time. As the battery voltage decreases below the over discharge detection voltage level, the GLF73910 switch is turned off immediately to cut off the battery power rail, consuming an ultra-low leakage current (I_{SD}) to save the battery. In addition, when the load current reaches the I_{SC} short circuit protection level, the GLF73910 switch is turned off and will maintain the off state to avoid any serious damage to system. The short circuit delay time avoids any false trigger which might open the switch.

When a charged battery cell is connected with the GLF73910, the GLF73910 remains in the off state and consumes an ultra-low leakage current (I_{SD}) until the V_{ON} voltage is applied to VOUT pin. Note that the GLF73910 is activated only by a V_{ON} voltage from a charger output.

FEATURES

- Voc, Over Charge Detection: 4.35 VBAT
 - Release Hysteresis, V_{OC_Hys} = 120 mV
 - Detection Delay, $t_{OC} = 530 \text{ ms}$
- Vod, Over Discharge Detection: 2.80 VBAT
- Load Short Circuit Protection with Delay Time to avoid a false trigger
- GLF73910 is Activated by Applying V_{ON} to the VOUT Pin from Charger
- 1.5 A Continuous Charging Current Capability from VOUT to VBAT Pin
- Low Ron : 36 mΩ Typ. @ 3.6 VBAT
- Quiescent Current, I_Q = 790 nA Typ @ 4.2 V_{BAT}
- Shutdown Current, Isp = 70 nA Typ @ VBAT < VOD
- Latch-off at Over Discharge Detection and Short Circuit Protection. Apply V_{ON} to VOUT pin to turn on GLF73910 switch again
- 0.5 V Battery Minimum Voltage for Charging
- Patent Pending Circuit Architecture
- 0.97 mm x 0.97 mm x 0.55 mm Chip Scale Package 4 Bumps, 0.5 mm Pitch

APPLICATIONS

- BLE Wireless Earphone
- Wearables / IoT Devices

PACKAGE

APPLICATION DIAGRAM

Note: The GLF73910 is activated by applying the V_{ON} to the VOUT pin.

TIMING DIAGRAM

DEVICE INFORMATION

Part Number	Top Mark	R _{оN} (Тур) V _{BAT} =3.6 V	Over Charge Detection, V _{oc}	Over Discharge Detection, Vod
GLF73910	CF	36 mΩ	4.35 V	2.80 V

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Functional Block Diagram

PIN CONFIGURATION

PIN DEFINITION

Pin #	Name	Description
A1	VOUT	VOUT pin is connected to the charger output and system load. If the switch is in the off state, applying the appropriate voltage (V_{ON}) to V_{OUT} turns the switch back on.
A2	VBAT	VBAT pin is connected to the positive terminal of a battery pack to monitor the battery voltage. When the V_{BAT} voltage reaches the V_{OD} , the main switch is turned off and maintains the off state to save the battery from discharging.
B1	GND	Ground
B2	NC	No Connection. Leave it open.

Figure 2. 0.97 mm x 0.97 mm x 0.55 mm WLCSP

ABSOLUTE MAXIMUM RATINGS

INTEGRATED POWER

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
Vbat, Vout	Each Pin Voltage Range to GND			6	V
I _{BAT}	Switch Continuous Current between VBAT and VOUT			1.5	А
PD	Power Dissipation at $T_A = 25^{\circ}C$			1.2	W
Tstg	Storage Junction Temperature			150	°C
TA	Operating Temperature Range			85	°C
θја	Thermal Resistance, Junction to Ambient			85	°C/W
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	6		kV
ESD		Charged Device Model, JESD22-C101	2		ΓV

ELECTRICAL CHARACTERISTICS

Values are at T_{A} = 25 °C unless otherwise noted.

Symbol	Parameter	Condition	าร	Min.	Тур.	Max.	Units
VBAT(MIN)	Minimum Battery Voltage	Battery voltage for charging fro	m VOUT to VBAT ⁽¹⁾	0.5			V
Voc	Over Charge Detection	VBAT increases until switch turns off		4.25	4.35	4.45	V
VOC	Voltage	V_{BAT} increases until switch turns off, Ta=55 °C $^{(1)}$			4.39		
V _{OC_HYS}	Over Charge Protection Release Hysteresis	VBAT decreases and switch turns on			120		mV
toc	Over Charge Protection Delay	V _{BAT} > V _{OC} , Blanking time until switch turns off V _{BAT} decreases until switch turns off			530		ms
Mar	Over Discharge Detection Voltage	V _{BAT} decreases until switch turns off		2.72	2.80	2.88	v
Vod		V_{BAT} decreases until switch turns off, Ta=55 °C ⁽¹⁾			2.81		
M	ON Voltage applied to	V_{OUT} to turn on switch, $V_{BAT} \ge 3.1 \text{ V}^{(1)}$			3.6		V
Von	VOUT to turn on switch	V_{OUT} to turn on switch, $V_{BAT} \ge 3.1$ V, Ta=55 °C ⁽¹⁾			3.6		
VF	Forward Voltage	From VOUT to VBAT pin, $V_{BAT} < 3.0 V$			0.4		V
I _{SC}	Short Circuit Shutdown	VBAT = 3.6 V			0.6		Α
tsc	Short Circuit Delay Time	VBAT = 3.6 V ⁽¹⁾			0.65		ms
	Quiescent Current with Switch On	VBAT = 3.6 V, IOUT=0 mA, Switch = ON			0.72		
lq		V_{BAT} = 4.2 V, I _{OUT} =0 mA, Switch = ON			0.79		uA
		VOLT to turn on switch V_{OUT} to turn on switch, $V_{BAT} \ge 3.1 \text{ V}$, Ta=55 °C (1)rward VoltageFrom VOUT to VBAT pin, $V_{BAT} < 3.0 \text{ V}$ ort Circuit ShutdownVBAT = 3.6 Vort Circuit Delay TimeVBAT = 3.6 V (1)iescent Current with titch OnVBAT = 3.6 V, lout=0 mA, Switch = ONVBAT = 4.2 V, lout=0 mA, Switch = ONVBAT = 4.2 V, lout=0 mA, Switch = ONVBAT = 3.6 V, Vout = 0 VVBAT = 3.6 V, Vout = 0 VVBAT = 2.5 V, Vout = 0 VVBAT = 2.5 V, Vout = 0 VVBAT = 2.5 V, Vout = 0 V, Ta=55 °C (1)		0.88			
Shutdown Cu	Shutdown Current from	Vbat = 3.6 V, Vout = 0 V			105		
I _{SD}	VBAT When Main Switch	$V_{BAT} = 2.5 \text{ V}, V_{OUT} = 0 \text{ V}$			70		nA
	is Off	VBAT = 2.5 V, VOUT = 0 V, Ta=5	5 °C ⁽¹⁾		95		
Ron	On-Resistance	V _{BAT} =4.2 V, I _{OUT} = 500 mA	Ta=25 °C		34	40	
			Ta=55 °C (1)		37		mΩ
		V _{BAT} =3.6 V, I _{OUT} = 500 mA	Ta=25 °C		36	42	
			Ta=55 °C (1)		39		
		V _{BAT} =3.3 V, I _{OUT} = 500 mA	Ta=25 °C		38	45	
toff	Turn-Off Time (1)	Cout=0.1 μF, Rout=150 Ω, Vou	T = Vod to 0 V		31		us

Notes: 1. By design; characterized, not production tested.

TYPICAL PERFORMANCE CHARACTERISTICS

TED POWER

INTEGRA

50

45

40

35

30

25 20

3.3

3.4

ON RESISTANCE (mD)

EN =VIN

V_{IN} = 4.2V

35

60

85

Figure 5. On-Resistance vs. VBAT Supply Voltage

Figure 7. Quiescent Current vs. Temperature

Figure 6. On-Resistance vs. Temperature

Figure 8. Shutdown Current vs. Temperature

APPLICATION INFORMATION

The GLF73910 is an I_QSmart[™] ultra-efficient battery protection switch with the accurate over charge voltage, over discharge voltage, and short circuit protection for lithium-lon/Polymer battery safety. The best in class efficiency makes it ideal for the design of hearing devices, wearable devices, and tiny IoT devices.

Activation of Charging and Minimum Battery Charging Voltage

The GLF73910 is activated to turn on the main charging switch only by applying the on voltage (V_{ON}) to the VOUT pin, when a charger IC is enabled. The minimum battery voltage to charge is 0.5 V ($V_{BAT(MIN)}$). With a deeply discharged below 0.5 V, the GLF73910 does not turn on both the charge and discharge paths. During the pre-charge mode, where the battery voltage (V_{BAT}) is between 0.5 V and 2.9 V, the charging current flows through an internal diode (V_F). As the battery voltage increases beyond 3.1 V, the charge and discharge path switches will be fully activated to reduce the voltage drop and save power dissipation during both constant-current and constant-voltage charging modes.

Over Charging Voltage Protection

When the voltage of a battery increases to the over-charge voltage detection level (V_{OC}), the charge path is turned off to stop charging the battery after a preset over-charge detection delay time (t_{OC}) in order to avoid a false trigger. The charging path is not turned off if the battery voltage returns to a voltage less than the detection level within the delay time. The charging path turns on again as the battery voltage decreases below the over-charge release voltage level ($V_{OC} - V_{OC_HYS}$).

Over Discharging Voltage Protection

When the voltage of a battery decreases to the over-discharge detection voltage level, the GLF73910 discharging path is turned off consuming an ultra-low leakage current to save the battery. The GLF73910 remains in the off state until a higher voltage is applied to the VOUT pin.

Short Circuit Protection

When the discharge current from the battery exceeds the short circuit detection level (I_{SC}), the discharging path of the GLF73910 will be turned off after a preset delay time (t_{SC}) in order to avoid a false detection. After the short circuit protection event, the GLF73910 maintains in the off state and needs a power recycle of a system to apply V_{ON} to VOUT pin in order to be reactivated.

Input and Output Capacitors

Input and output capacitors are not required for GLF73910 operation. However, a 0.1uF capacitor is recommended to be placed close to the VBAT and VOUT pins in order to mitigate any unexpected electrical noise or the transient voltage peak caused by a hot-plugging voltage source.

Board Layout

All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VBAT, VOUT, and GND will help reduce voltage drops, and parasitic effects during dynamic operation as well as improve the thermal performance at high load currents.

PACKAGE OUTLINE

Dimensional Ref.					
REF.	Min.	Nom.	Max.		
Α	0.500	0.550	0.600		
Α1	0.225	0.250	0.275		
A2	0.275	0.300	0.325		
D	0.960	0.970	0.985		
E	0.960	0.970	0.985		
D1	0.450	0.500	0.550		
E1	0.450	0.500	0.550		
Ь	0.260	0.310	0.360		
е	0	.500 BS	C		
SD	0	.250 BS	C		
SE	0	.250 BS	C		
Tol. of Form&Position					
999	0.10				
bbb	0.10				
CCC	0.05				
ddd	0.05				

<u>Notes</u>

- 1. AU DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.